

Titerbestimmung von Ammoniumeisen (II) sulfat

Beschreibung

Dieser Applikationsbericht beschreibt das allgemeine Verfahren zur Titerbestimmung von Ammoniumeisen (II) sulfat - Lösungen.

Der Titer ist eine dimensionslose Zahl von etwa 1 zum Korrigieren der angegebenen Konzentration. In der Software der Titriergeräte und den Applikationsberichten von SI Analytics® beschreibt der Begriff "Titer" die exakte Konzentration in mol/L und nicht den dimensionslosen Faktor.

Geräte

Titrator	TL 5000, TL 7000, TL 7750, TL 7800	
Wechselaufsatz	WA 20 (nur für TL 7000 oder höher)	
Elektrode	Pt 62 oder Pt 62 RG	
Kabel	L 1 A (nur für Elektroden mit Steckkopf)	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Becherglas 150 ml	
	Magnetrührstab 30 mm	

Reagenzien

1	Ammoniumeisen (II) sulfat – Lösung, von der der Titer bestimmt werden soll		
2	Kaliumdichromat - Referenzmaterial		
3	Schwefelsäure konz.		
4	Elektrolytlösung L3004 (für Pt 62)		
5	Destilliertes Wasser		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

Das Kaliumdichromat - Referenzmaterial wird getrocknet, wie in dem entsprechenden Analysezertifikat beschrieben.

Ammoniumeisen (II) sulfat - Lösung 0,1 mol/L

47,1g (NH₄)₂Fe(SO₄)₂ x 6 H₂O werden in ca. 750 mL dest. Wasser und 20 mL konz. H₂SO₄ gelöst. Nach dem Abkühlen wird die Mischung mit dest. Wasser auf 1,0 L aufgefüllt.

Ammoniumeisen (II) sulfat – Lösung 0,1 mol/L ist auch als fertige Maßlösung erhältlich.

Reinigung der Elektrode

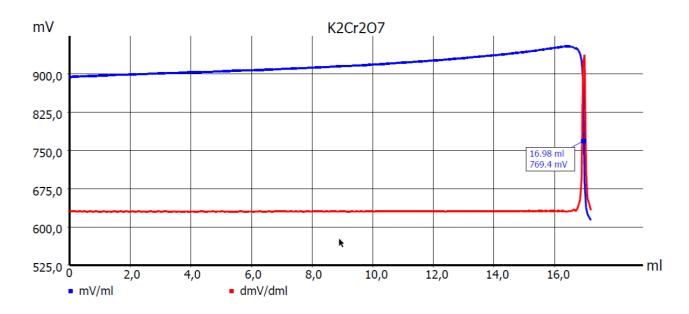
Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung der Pt 62 eignet sich die Elektrolytlösung L300. Für die Pt 62 RG kann destilliertes Wasser verwendet werden.

Probenvorbereitung

Die Menge des volumetrischen Standards hängt von der Größe der Bürette und der Konzentration der Ammoniumeisen (II) sulfat – Lösung ab. Die Menge sollte so gewählt werden, dass etwa die Hälfte des Bürettenvolumens verbraucht wird. Am gebräuchlichsten ist die 20 ml Bürette. Die erforderliche Kaliumdichromat-Menge kann nach dieser Faustregel abgeschätzt werden:

$$W[g] = 0.5 * Konzentration[mol/L]$$

Zur Bestimmung des Titers einer 0,1 mol/L Ammoniumeisen (II) sulfat – Lösung werden 0,05g Kaliumdichromat Referenzmaterial in ein 150 mL Becherglas eingewogen, in ca. 60 mL dest. Wasser gelöst und 10 mL konz. H_2SO_4 zugegeben. Anschließend wird mit Ammoniumeisen (II) sulfat – Lösung bis zu einem Equivalenzpunkt titriert. Der Verbrauch sollte etwa 5 - 15 ml betragen.


Wenn sich der spezifizierte Gehalt des volumetrischen Standards signifikant von 100% unterscheidet, muss die Einwaage zur Berechnung der Konzentration korrigiert werden:

$$W = \frac{Probenmasse * spezifiziertem Gehalt \%}{100}$$

xylem | Titration 163 TD 2

Titrationsparameter

Probentitration

Standardmethode			
Methodentyp	Automatische Titration		
Modus	Linear		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	1 s
		Max. Wartezeit	10 s
		Messzeit	1 s
		Drift	50 mV/min
Startwartezeit	5 s		
Lineare Schrittweite	0,05 mL		
Dämpfung	keine	Titrationsrichtung	fallend
Vortitration	8 mL	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	1000
Max. Titrationsvolumen	20 mL		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

^{*} gegebenenfalls muss das Volumen der Vortitration angepasst werden. Das vortitrierte Volumen sollte so bemessen sein, dass vor dem EQ noch min. 1 ml linear titriert wird.

xylem | Titration 163 TD 3

Berechnung:

$$T\left[mol/l\right] = \frac{W*F2}{(EQ-B)*M*F1}$$

В	0	Blindwert
W	man	Probenmenge [g]
F2	6000	Umrechnungsfaktor 2
EQ1		Verbrauch des Titrationsmittels am EQ
М	294,19	Molekulargewicht von Kaliumdichromat
F1	1	Umrechnungsfaktor 1

Das Ergebnis der Titerbestimmung sollte in mol/L direkt im Wechselaufsatz gespeichert werden.

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

